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I. We propose to investigate the steady-state problem of viscous, thermally conduct- 
ing fluid flow in an unbounded domain D under the influence of thermocapillary forces pro- 
duced by nonuniform heating of a free boundary F for small values of the viscosity coeffi- 
cient v + 0 and thermal diffusivity X + 0: 

(v, V)V = - - ( I / p ) V p  + vAv + g, v v T  = EAT, div v = 0; 

p = 2 v p n l - I n  + o (k I .~ k2) -}- p , ,  (x, y, z) ~ F, 

2vpIIn - -  2v9 (nl-I n) n = Vao; vn = 0, (x, y, z) ~ F, 

• = q, (x, y ,  z) ~ Fx; T = Tr ,  (x, y, z) ~ F2, 

v = O, OT/an = O, (x, y ,  z) ~ L .  

( l . i )  

(1.2) 

Here v = (Vx, Vy, v z) is the velocity vector, T is the temperature, g=--gez[ez =(0, 0, I) 
is the unit vector along the z axis, and g is the gravitational acceleration], n is the unit 
vector outward normal to the free boundary F, ~ is the strain-rate tensor, k I and k 2 are the 
principal curvatures of the surface F, p, = count is the pressure on r, Vt = V --(nv)n is 
the gradient along F, o is the coefficient of surface tension, which is assumed to be a lin- 
ear function of the temperature: o = o0 + oT(T - T,) (o0, o T, and T, are known constants, 
o T < 0), and L is a solid boundary. The surface I consists of two parts F l and F 2, q(x, y, 
z) is the specified heat flux onto Fz, and K is the thermal conductivity. The velocity 
field vanishes at infinity. 

Nonlinear boundary layers are formed near the boundaries of the domain for vanishingly 
small viscosity and thermal conductivity. The flow is approximately described by the Euler 
equations everywhere outside the boundary layers in the unbounded domain. Several authors 
[1-5] have investigated nonlinear Marangoni boundary layers formed near a free boundary as 
a result of the thermocapillary effect. Asymptotic expansions have been derived [6] in the 
limit ~ § 0 for the solution of the steady-state problem of fluid flow under the influence 
of tangential stresses. 

Here we investigate the formal asymptotic expansions of the solution of problem (i.i), 
(1.2) in the limit v, X + 0- We reduce the problem to dimensionless form and introduce the 
small parameter e = M -I/3 (M = loT[dQp-lg-2K -I is the Marangoni number, and d and Q are char- 
acteristic scales of length and heat flow). For the dimensionless pressure p' we have the 
relation p = Pp' - pgz (P = o0/d is a pressure scale), The characteristic velocity in the 
boundary layer near the free boundary U = (oT2Q2v-ld-ZK-2p-2) I/3 is adopted as the velocity 
scale. Asymptotic expansions of the solution of problem (i.I), (1.2) are constructed in the 
form 

v ~ h o -}- e (hi q- v l / -  w l ) +  .... P '  "~ ~qo + e~(Pl -}- ql + q )  + . . . .  

T ~  0 o + T O + t o - ~ O ( e ) ,  ~ ~o Jr e~t q- .... ( 1 . 3 )  

where X = [OTIQO0-1K -2 is the capillary constant [3], and z = ~(x, y) is the equation for 
the free boundary. We denote by D r the domain of the boundary layer near the free boundary, 
and by D L the domain near the solid wall. Then h k, qk, and 8 o are functions representing 
the solutions of the boundary-layer problem in Dr; w i, rz, and t o are the same in D L, and 
vt, Pz, and T o characterize the solution outside D L and D r . The orders of the principal 
terms in the expansions (1.3) are determined from the conditions that the viscous and iner- 
tial terms in the Navier-Stokes system (i.i) and in the boundary conditions (1.2) for the 
tangential stresses are of the same order. The thickness of the boundary layer in D F is of 
the order of e in this case. 
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2. The boundary-value problem for the principal terms of the asymptotic expansion 
(1.3), which govern the flow in the boundary layer near the free boundary, is obtained by 
applying the second iteration process of the Vishik-Lyusternik method [7] to the system 
(i.i), (1.2). Near the surface F we introduce local orthogonal coordinates ~, ~, 0 [6] [~ 
is the distance from the point N(x, y, z) to T, and ~, 8 are the curvilinear coordinates on 
r of the base of the normal dropped from the point N onto r]. We assume that segments of 
the normals to F do not intersect for sufficiently small ~. 

Let h~k, h0k, and hsk be the components of the vector!h k in the local coordinates. We 
adopt the function To = 0 as the solution of the degenerate problem for (i.i), (1.2) when 

= X = 0. We substitute Eq. (1.3) in (I.I) and (1.2), form the Taylor series expansion of 
v I and Pz in powers of ~, and introduce the extension transformation ~ = es. We denote 
H~I =h~1+vln[r. Setting the coefficients of ~-i and e 0 equal to zero, we obtain h~0 = 0 
and find that h~0, hs0, and Hsz satisfy the Prandtl boundary-layem equations. We state the 
boundary-value problem for h~0, H$z, and 8 0 in the planar case, regarding the coordinate 
as the length of the train along the surface F: 

h~o~h~o /0~ +H~lah~o/aS = ~2h~o/'~s~, 
h~oOOo~+H~lOOo/Os = pr-lb2Oo~s2, Oh~o/O~ + OH~z~S = O, 

(2.1) 

~h.~o]Os =- -000 /0% O0,/Sslr ~ = - - P r - ~ / ~ q ,  Oo[r ~ = Oa, H ~  = 0 (S = 0), 

h , o = h ~ = O o = O  ( s = ~ )  

[Pr is the Prandtl number, and q(~) is the given dimensionless heat flux onto FI]. We note 
that problem (2.1) for 8 o = 0 and for specified stresses on F and a given initial velocity 
profile in the domain D has been investigated previously by Kuznetsov [5], who gives the con- 
ditions for its solvability. 

We determine the value of q0 on the free boundary. Following [6], we derive an equa- 
tion for q0 in DF: 

- -  k2 h~o ds q o = - - k l  h~ods ~ �9 ( 2 . 2 )  
s 

Substituting Eq. (2.2) in the boundary condition (1.2) for the normal stresses and letting 
v tend to zero, we obtain the free-boundary equation in the principal approximation (in di- 
mensioned form) 

(kl + k2) + ks .f hL d~ + k2 h~o d~ = Ogz + ~. ( 2 . 3 )  
0 0 

This equation is readily simplified for the planar problem. In this case, integrating the 
first equation (2.1) initially with respect to s on the semiaxis (0, ~) and then with re- 
spect to ~ on the interval [%, ~], we have the relation 

oo ae 

h~o ds = [% (~) - -  0o (%)j,=o + t"/o ~ (s) ds ( 2 . 4  ) 
0 0 

(/o(S) = h~o(s, %) is the velocity profile in the cross section ~ = %). We substitute Eq. 
(2.4) in (2.3), assume that k 2 = 0, and, writing the dimensionless coefficient of surface 
tension in the form o = i- lO01r, derive the free-boundary equation in the dimensionless 
form 

[ 3]  k 1 l - - 2 % T r ( r  /~ds = B z + c ,  ( 2 . 5 )  

where T F is the value of the temperature 8 0 on the free boundary, and B = pgd2/ao is the 
Bond number. Thus, the function ~0 in Eq. (1.3) is determined by solving Eq. (2.3) or (2.5). 

Inviscid flow outside D L and D T is obtained by applying the first iteration process [7] 
to Eqs. (i.I) and (1.2). The principal terms of the asymptotic expansions (1.3) of v z, and Pz 
are determined by solving the boundary-value problem 
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(vl, V)Vl = - - V P l ,  d iv  u = O, 

Vxno ]r o : HU le=~, vxnl I L : 0,  "Y 1 : 0 (X 2 --j'- L/2 + Z 2 ~-  iX)) 

(r0 is the surface z = ~0, n0 is the vector normal to r0, and n 1 is the vector normal to 
the solid wall). 

The vector function w I describes the velocity field in the boundary layer near the 
solid wall and offsets the discrepancy induced by the fact that the vector ~ satisfies the 
no-slip condition on L. The boundary-value problem for wl and r I is not given, because 
these functions contribute to the free-boundary equation only in higher approximations, be- 
ginning with the second. 

3. We now consider the planar problem of calculating the shape of a free boundary of 
a capillary liquid which is poured onto a solid horizontal surface and sets it in the half- 
plane x e 0. We denote by 6 the contact angle formed by the liquid on the wetting line x = 
0 with the solid wall. We assume that on the part of the free boundary r I a constant heat 
flux q = const is specified at ~ e [0, s and a constant temperature is specified at ~>[ 
(~ is the arclength read from the contact point along the free boundary). We give the so- 
lution of the system of boundary-layer equations (2.1) on the part F 1 for q = i. Self-sim- 
ilar solutions have been found [2] for the temperature boundary-layer equations near the in- 
terface of two immiscible liquids. The system (2.1) admits the solution h~0 =/'(~), 00 = 

]/r~T(~), ~ = s/]f~. For f(~) and ~(q) we derive the boundary-value problem (it is not neces- 
say to specify the initial profile, because it satisfies the self-similarity condition) 

21'" 4- 1/" = O, 2 Pr - lx  ' '  + Ix '  - -  f i t  = O, ( 3 . 1 )  
](0) = O , / " ( 0 )  = --0,5x(O), x'(O) = - - P r  -1 /~ , / ' (oo)  = ~ ( ~ )  = O. 

We integrate'the resulting system numerically for various Prandtl numbers, using the 
Runge-Kutta method. For fixed values of Pr the functions f'(D) and 8(q) decrease monotoni- 
cally as q increases and for large q the decay of the velocity is greater for smaller num- 
bers Pr. The velocity profiles for different numbers Pr intersect, but the temperature pro- 
files do not. As Pr is increased, the thickness of the dynamic (velocity) boundary layer 
increases, and the thickness of the temperature boundary layer decreases. Figure 1 shows 
graphs of the velocity f'(0) (curve i) and the temperature T(0) (curve 2) as a function of 
the Prandtl number on the free boundary. 

We calculate the shape of the free boundary integrating Eq. (2.5), in which we set ~0 = 
0 and f0 = 0 (since h~0 = 0 at ~ = 0). Taking the solution of problem (3.1) into account, 

we write Eq. (2.5) in the form 

n 

;o ( t  + ;~2)-~/2 (1 + ZF (~)) = B ;  o + c ( 3 . 2 )  

[the prime signifies differentiation with respect toF(~): x(0)(2~- ~l) at 0 5 ~ E s 

'(0) = tan6 ~0(0) = 0 (6 is the con- and F(~) : T(0)~l fpr ~>/). The boundary conditions ~0 
tact angle) hold for problem (3.2). We integrate Eq. (3.2) numerically for various ~ and 6, 
B = i, Pr = 7, and ~(0) = 0.2235. We set s = 9 in the calculations; the free boundary ap- 
proaches a horizontal asymptote at this arclength. For the integration Eq. (3.2) is rewrit- 
ten in parametric form with the arclength as its parameter. The unknown constant c is eval- 
uated with the additional condition ~0'(=) = 0. The thickness of the liquid layer at infin- 
ity is determined from the equation H = -cB -I The calculations are carried out for % in 
the interval 0 ~ X < ~, = 1.4914. At X = X, the coefficient of the leading derivative in 

Eq. (3.2) vanishes at ~ = 0. 

Figure 2 shows the contact angle 6 as a function of the parameter X, which character- 
izes the heat flux. The layer thickness H is constant along curves 1-4 and has the values 
1.85, 1.5, i, and 0.5, respectively. The greater the thickness of the layer, the more rap- 
idly ~ increases with I. For each thickness H the maximum value of 6 is equal to ~ and is 
attained at some lz ~ l,; for example, lz = 0.5 for H = 1.85. The value of I l increases as 
H decreases, and X I + X, in the limit H + 0. The calculated dependence of H on the angle 6 
shows that H increases monotonically with 6 for a fixed I and attains a maximum at 6 = ~. 
This maximum is equal to two at I = 0 and decreases to zero as increases. 

These results can be used to calculate the shape of a flat meniscus adjacent to a solid 
vertical wall. The liquid now fills the infinite domain bounded by the wall x = 0 and the 
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free boundary z = ~(x). Equation (3.1) is integrated under the conditions ~0'(0) = tan ~, 
~0(~) = 0, where 8 is the acute angle between the tangent to the free boundary and the x 
axis at x = 0. The function F(~) is the same as before. The constant c = 0 in Eq. (3.2). 
For 0 ~ I < l, the height h = ~0(0) of the meniscus increases monotonically with 8 and at- 
tains a maximum at 8 = ~/2. This maximum is equal to ~ at ~ = 0. For a fixed angle $ the 
height of the meniscus decreases with increasing I and becomes equal to zero at ~ = ~, = 
1.491. 

We note that Eq. (1.3) does not contain the boundary-layer functions, which show up 
in the domain D I as neighborhoods of a contact point of the free boundary and the solid 
wall. In D I the asymptotic expansions exhibit a more complex character than (1.12). The 
boundary-layer equations in D ! coincide with the complete Navier-Stokes equations. The 
boundary-layer functions contribute to the free-boundary equation only in higher approxi- 
mations and will therefore be disregarded. Asymptotic investigations of the Navier-Stokes 
system near a contact point are reported in [8, 9]. 

4. We now consider the axisymmetrical problem of calculating the shape of the free 
boundary of a droplet issuing from a hole in a plane horizontal wall. The free surface 
rests on the edge of a circular hole of radius R. We assume that the temperature distribu- 
tion at the free boundary is given: T - T, = ARf(~) (~ is the dimensionless arclength in 
the axial cross section, read from the symmetry axis). We introduce the parameter I = 
IoTIARc0 -I, which characterizes the temperature gradient along the free boundary. Because 
of axial symmetry, he0 = 0, we infer from the boundary-layer equations that h ~ 0 obeys the 
relation 

ao cp 

'Ir d~ 
0 0 

(4.1) 

[r = r(~) and z = z(~) are the parametric equations for the free boundary in cylindrical 
coordinates]. Allowance is made here for the fact that h~0 § 0 in the limit q0 + 0. The 
free boundary satisfies Eq. (2.3), which, according to relation (4.1), reduces in dimen- 
sionless form to the system of equations 

rtzZt -- rff~t C ( r z ' ) ' ( t - - ~ , / ) - - X - - j r l ' d q ~ - ~ z B + c ,  r '=+z 'z= 1. (4 2) 
r r '  r 

0 

Placing the origin on the free boundary on the symmetry axis, we write the boundary 
conditions r(0) = z(0) = z'(0) = 0, r'(0) = i. The system (4.2) is integrated numerically 
on the basis of the Runge-Kutta method. In the limit ~ § 0 the solution of the system is 
expanded as a power series in~ and is matched with the numerical solution. The Bond num- 
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ber, the parameter X, and the function f(~) are given, and it is required to determine the 
constant c, the droplet volume V, and the angle 8 (~ - ~ is the angle at the contact point 
between the tangent to the axial cross section of the free boundary and the horizontal solid 
wall). 

In the case ](~)~ exp (--~) the calculations are carried out for B = -i, a constant vol- 
ume V = i, and various R. We note that several free boundary configurations with different 
angles 8 can exist for a fixed R. For the first branch of the solutions, the angle 8 de- 
creases with increasing X from a certain ~0 at X = 0 to ~i at I = X,. A solution does not 
exist for ~ > X,; X, depends on R and increases with the value of R, but does not exceed 
unity. For example, X~ = 0.6, ~0 = 87-6~ and ~i = 60.8~ for R = 0.975. For the second 
branch of the solutions ~ decreases with decreasing I from ~i at ~ = ~, to a certain ~ at 
X=O. 

For /(q) ---- ~ -- ~ (0 ~ ~ ~ ~), ](~)-----0 (~ > ~) the calculations are carried out for constant 
R = i, B = -i, and various volumes V. Several solutions can exist for a given V. For the 
first branch of the solutions at a fixed angle 8 the droplet volume increases with increas- 
ing ~ from V I at X = 0 to V 2 at X = X~. A solution does not exist for X > l~; X I depends 
on 8 and increases from 0 to 1 as 8 decreases from 86 ~ to 0. For the second branch of the 
solutions the droplet volume increases from V= at I = X~ to Vs at X = 0. For example, V~ = 
0.36, V2 = 0.78, Vs = 1.66, and XI = 0.79 at 8 = 60 ~ . 

The volume is plotted as a function of i in Fig. 3. Curves 1-4 correspond to 8 = 80 ~ , 
70 ~ , 60 ~ , and 30 ~ , respectively. The maximum value of I is equal to unity and corresponds 
to the critical free-boundary temperature at which the coefficient of surface tension be- 
comes equal to zero. 

5. Here we discuss the influence of the thermocapillary effect on the shape of the 
free boundary of a liquid filling a horizontal layer, whose thickness is of the order of 
the boundary layer thickness e. Here e = M -~/3 (M = IOTIAILap-~9 -2 is the Marangoni number, 
AI is a characteristic scale of the temperature gradient, and L is a characteristic horizon- 
tal scale). We denote by UI = (IOTI2A~aLO-29-~) I/s the characteristic velocity in the bound- 
ary layer; we then introduce the dimensionless pressure p' according to the equation p = 
pU2p ' - pgz. We take BI = pgh2o0 -~ as the Bond number. We calculate planar thermocapillary 
flow generated in the domain bounded by the free boundary F and by a solid wall due to heat- 
ing of the free boundary at a given constant wall temperature. Asymptotic expansions of the 
solution of problem (i.i), (1.2), (FI is the empty set) in the limit e § 0 are constructed 
i~a the series form 

v N b  o +  eh~ + .... ~ , - - ' e ~ o l +  .... p ' N q o + e q ~ +  .... 
T ~%+e~+..- (5.1) 

The equations for the principal terms of the asymptotic expansions are derived by 
means of the second iteration process of the Vishik-Lyusternik method [7]. Equations (5.1), 
unlike the series (1.3) do not contain coefficients characterizing the external solution, 
because the entire flow domain coincides exactly with the boundary-layer domain. Let ~(s, 
x) be the stream function (s = z/e); then hx0 = 8~/8s, hz0 = 0, and hz2 = -8~/8x. The bound- 
ary-value problem for the principal terms of the expansions (5.1) are reduced to the form 

o~ o2~ o~ 02~ o ~  o% 0% o~ ~ o~ o~ o ~ p r _  t o~.  
Os OxOs Ox Os 2 = osa Ox' ~ = 0 ,  Os Ox Ox Os Os2' ( 5 . 2 )  

02~'0/082 = OTr/OX, ~ = O, T = Tr(X ) (S = ~l(Z)),  

O~/Ox = O~/Os = O, % ~ const (s = 0). 

Here xF(x) is the temperature distribution along the free boundary. From the dynamical 
boundary condition on the free boundary we deduce the relation Xq0 = B~ I (X = IOTIAILo0 "I 
is the dimensionless temperature gradient). 

The system (5.2) admits a self-similar solution. Let the temperature distribution 
4/s along the free boundary be given by the power law ~r =,i.25~x . It is readily shown that 

The f u n c t i o n  @(6) and  t h e  p a r a m e t e r  b ( ~ )  a r e  d e t e r m i n e d  by  s o l v i n g  t h e  b o u n d a r y - v a l u e  p r o b -  
lem 
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5 0 "  - b 3 o  '2 + 3 t ~ 0 r  ~ = 5~b~, r (0) = r (1) = 0 '  ( t )  = 0, �9 7 0 ) = - - 1  ( 5 . 3 )  

(a  = 2 ~ - z x - s / 3 / 3 ) .  P rob lem ( 5 . 3 )  i s  s o l v e d  n u m e r i c a l l y .  For  a = 1 we o b t a i n  t h e  v a l u e s  
b = 1 .218  and O ' ( 0 )  = 0 . 2 4 9 .  

F i g u r e  4 shows p r o f i l e s  o f  t h e  l o n g i t u d i n a l  v e l o c i t y  0 ' ( ~ )  ( c u r v e  1) and t h e  f u n c t i o n  
100($)  ( c u r v e  2 ) .  The v e l o c i t y  a t t a i n s  a maximum a t  t h e  f r e e  b o u n d a r y .  A c o u n t e r f l o w  zone 
w i t h  a maximum v e l o c i t y  r o u g h l y  one t h i r d  s m a l l e r  t h a n  t h e  v e l o c i t y  a t  t h e  f r e e  b o u n d a r y  
o c c u r s  in  t h e  domain 0 g z ~ 0 . 6 6 r  

Prob lem ( 5 . 2 )  i s  s o l v e d  by G a l e r k i n ' s  method f o r  t h e  c a s e  o f  a ha rmon ic  t e m p e r a t u r e  
d i s t r i b u t i o n  xF = xa s i n x .  The unknown f low domain D r i s  mapped i n t o  a r e c t a n g u l a r  s t r i p  
by t h e  t r a n s f o r m a t i o n  q = 1 - s ~ - Z ( x ) .  The s t r e a m  f u n c t i o n  and t h e  e l e v a t i o n  o f  t h e  f r e e  
b o u n d a r y  a r e  r e p r e s e n t e d  by t h e  s e r i e s  

N N 

= ~, ~k(~)sinkx, ~ 1 = ~ 1 o ~  ~ ~lkcoskx. 
h=0 h~l 

The coefficients ~k and ~zk satisfy a system of ordinary differential equations, which are 
solved numerically by the regula falsi method. In the calculations it is assumed that N = 
3, % = 0.143, and L = 5. The average thickness of the layer is 0.i cm, and B = 0.055. This 

corresponds to a temperature gradient A~ = I0 deg/cm and a parameter g = 0.0126. 

Figure 5 shows the pattern of streamlines for ~= = 0.2 in one cell. The streamlines in 
the interval [~, 2~] are symmetrical about the line x = ~. Curve 1 represents the shape of 
the free boundary, and curves 2-4 are the streamlines ~ = e at c = 0.002, 0.004, 0.006. Curve 
3 in Fig. 4 represents the profile of the velocity -10hx0 in the cross section x = 0.5~. The 
calculations show that the velocity reaches a maximum at the free boundary. Along this 
boundary the velocity increases from zero at x = 0 to the maximum value and then decreases 
to zero at x = v. As the amplitude of the temperature ~ increases, the thickness of the 
layer decreases at the point x = 0 and increases at the point x = ~. For ~a = T, = 0.28 the 
free boundary comes into contact with the solid wall at the point x = 0. For ~a> x, the 
liquid layer divides into strips, which wet the solid wall in the zones ~ - a + 2~m ~ x 

+ ~ + 2~m (m = 0, • ...); the wall is not wetted outside these zones. The values of 
depend on ~a and are determined numerically; for example, ~ = 0.144 for Ta = 0.35. 
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DROPLET SIZE DISTRIBUTION IN A PERCOLATION MODEL 

FOR EXPLOSIVE LIQUID DISPERSAL 

F. M. Sultanov and A. L. Yarin UDC 532.529+66.069.8+622.0 

A very complicated problem on irregular motion is involved in theoretical analysis of 
liquid deformation during dispersal and explosive break-up, which in general cannot besolved 
accurately. The chaotic (explosive) dispersal of a liquid is here related to the break-up 
in an infinite cluster as studied in percolation theory. The drop size distribution is de- 
rived theoretically. If the dispersal is planar, the standard empirical relations are ob- 
tained (the Rozin-Rammler law and Weibull distribution), but in the three-dimensional case, 
there are deviations from them. Measurements have also been made on dispersal for a concen- 
trated elastoviscous liquid based on a polymer on wire explosion in a cylindrical volume. 
The measurements on the whole agree satisfactorily with the theory. 

i. The following liquids are examined here: Newtonian ones (in particular, ideal ones) 
with surface tension and polymer ones, which have internal entropy elasticity [i]. For a 
sufficiently concentrated polymer liquid (~1%), the surface tension is usually unimportant, 
since virtually always Gao/~ >> i, in which G is the elastic modulus, ~ the surface tension, 
and a0 the minimum characteristic dimension, which is discussed in detail below. 

At t = 0, a bounded liquid volume with characteristic dimension R0 acquires kinetic 
energy E 0 due for example to an explosion at the center. This concerns particularly the 
electrical explosion of a wire or a detonation within a bounded volume (see [2-4] and Sec. 
3 below). In such cases, there are several factors that lead almost instantly to irregular 
chaotic deformation, which precedes the break-up and favors the latter. One of them is the 
shape imperfection or inhomogeneity in the exploding wire or detonator, which leads to ini- 
tial irregularity in the velocity pattern. Another is that the explosion-cavity expansion 
is accompanied by Rayleigh-Taylor instability [5-7], which is the first stage in the irregu- 
lar motion. As that form of instability develops, the motion becomes more complicated and 
chaotic, and in the nonlinear stage of perturbation growth, vortices arise at the tips of 
the fingers. To some extent, the break-up itself indicates that there are irregular motions, 
and accentuation of the chaotic motion is evident at the stage where there are separate drop- 
lets, which is evidently due to new modes occurring, particularly on expansion in the vacuum, 
which can occur in the motion of the continuous volume at least as small perturbations. 

Sometimes, one expects that the kinetic energy in the irregular motions arising from a 
central explosion will be E ~ E0; this is evident from estimates of the dissipative losses. 
Also, in general refining E does not affect the theory and merely has a quantitative effect 

on the results. 

We assume that the central explosion almost immediately gives rise to internal deforma- 
tions corresponding to many degrees of freedom, which absorb much of E 0. Such motion has 
been discussed [8] and is due either to turbulence or to initial inhomogeneity in the veloc- 
ity pattern from the explosion. 

In general, the dispersal and explosive break-up at present do not allow of a formal 
discussion of the internal irregular motion excitation. Also, there are some examples where 
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